Reductive metabolism of oxymatrine is catalyzed by microsomal CYP3A4

نویسندگان

  • Wenqin Liu
  • Jian Shi
  • Lijun Zhu
  • Lingna Dong
  • Feifei Luo
  • Min Zhao
  • Ying Wang
  • Ming Hu
  • Linlin Lu
  • Zhongqiu Liu
چکیده

Oxymatrine (OMT) is a pharmacologically active primary quinolizidine alkaloid with various beneficial and toxic effects. It is confirmed that, after oral administration, OMT could be transformed to the more toxic metabolite matrine (MT), and this process may be through the reduction reaction, but the study on the characteristics of this transformation is limited. The aim of this study was to investigate the characteristics of this transformation of OMT in the human liver microsomes (HLMs) and human intestinal microsomes (HIMs) and the cytochrome P450 (CYP) isoforms involved in this transformation. The current studies demonstrated that OMT could be metabolized to MT rapidly in HLMs and HIMs and CYP3A4 greatly contributed to this transformation. All HLMs, HIMs, and CYP3A4 isoform mediated reduction reaction followed typical biphasic kinetic model, and Km, Vmax, and CL were significant higher in HLMs than those in HIMs. Importantly, different oxygen contents could significantly affect the metabolism of OMT, and with the oxygen content decreased, the formation of metabolite was increased, suggesting this transformation was very likely a reduction reaction. Results of this in vitro study elucidated the metabolic pathways and characteristics of metabolism of OMT to MT and would provide a theoretical basis and guidance for the safe application of OMT.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human buprenorphine N-dealkylation is catalyzed by cytochrome P450 3A4.

Buprenorphine (BN) is a thebaine derivative with analgesic properties. To identify and characterize the cytochrome P450 (CYP) enzyme(s) involved in BN N-dealkylation, in vitro studies using human liver microsomes and recombinant human CYP enzymes were performed. Norbuprenorphine formation from BN was measured by a simple HPLC-UV assay method, without extraction. The BN N-dealkylation activities...

متن کامل

Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide.

The anticancer alkylating agents cyclophosphamide (CPA) and ifosfamide (IFA) are prodrugs that undergo extensive P450-catalyzed metabolism to yield both active (4-hydroxylated) and therapeutically inactive but neurotoxic (N-dechloroethylated) metabolites. Whereas the human liver microsomal P450 catalysts of CPA and IFA 4-hydroxylation are well characterized, the P450 enzyme catalysts of the alt...

متن کامل

Identification of human liver cytochrome P450 enzymes involved in biotransformation of vicriviroc, a CCR5 receptor antagonist.

Vicriviroc (SCH 417690), a CCR5 receptor antagonist, is currently under investigation for the treatment of human immunodeficiency virus infection. The objective of this study was to identify human liver cytochrome P450 enzyme(s) responsible for the metabolism of vicriviroc. Human liver microsomes metabolized vicriviroc via N-oxidation (M2/M3), O-demethylation (M15), N,N-dealkylation (M16), N-de...

متن کامل

Characterization of testosterone 11 beta-hydroxylation catalyzed by human liver microsomal cytochromes P450.

A combination of accelerator mass spectrometry (AMS) and liquid chromatography-tandem mass spectrometry has been used to clarify some new aspects of testosterone metabolism. The main pathway of testosterone oxidative metabolism by human liver microsomes is the formation of 1beta-, 2alpha-/beta-, 6beta-, 15beta-, and 16beta-hydroxytestosterones, mainly catalyzed by cytochromes P450 2C9, 2C19, an...

متن کامل

Halothane-dependent lipid peroxidation in human liver microsomes is catalyzed by cytochrome P4502A6 (CYP2A6).

BACKGROUND Halothane is extensively (approximately 50%) metabolized in humans and undergoes both oxidative and reductive cytochrome P450-catalyzed hepatic biotransformation. Halothane is reduced under low oxygen tensions by CYP2A6 and CYP3A4 in human liver microsome to an unstable free radical, and then to the volatile metabolites chlorodifluoroethene (CDE) and chlorotrifluoroethane (CTE). The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015